Tag Archives: Zenon

1.3. Sastoji li se dužina od točaka?

Sastoji li se dužina od točaka?

”Dužina je skup točaka pravca, a sastoji se od dviju zadanih točaka A i B pravca i svih točaka pravca koje su između njih. Točke A i B su krajnje točke te dužine.” (link)

Ali, ako se dužina sastoji od točaka, a točka nema nikakvu duljinu, otkud dužini duljina?

Zenonov najdublji paradoks je u osnovi geometrijski. On zapravo pita imaju li krajnji sastojci neke dužine – dakle točke – duljinu različitu od nula, ili im
je duljina stvarno nula. Dužina je očigledno beskonačno djeljiva; dakle ima beskonačno mnogo krajnjih sastojaka. Ako imaju bilo koju duljinu veću od nula, tad, suprotno našoj pretpostavci, duljina dužine mora biti beskonačna. Bilo koji niz koji se sastoji od pozitivnih veličina jednakog iznosa ima beskonačnu sumu. No, ako je pak duljina doslovno nula, tad će, suprotno našoj pretpostavci, duljina segmenta biti nula.

Ovdje ne pomaže nikakvo sumiranje beskonačnog reda, jer se ne zbrajaju sve manji dijelovi, nego uvijek jednaki dijelovi, kao u 1 + 1 + 1 + 1+…

Za Aristotela, problema nema. Točka je granica dužine. Dužina ima točno dvije točke, A i B.

dužina AB

Naravno, moguće je (”potencijalno”) načiniti još bilo koliko točaka na toj dužini. Dužina se može dijeliti na potencijalno beskonačno mnogo manjih dužina (AA1, A1A2, A2A3, …, AnB) i tako načiniti beskonačno mnogo točaka na dužini.

duzina AB

Ali, to ne znači da se dužina već (”aktualno”) sastoji od beskonačno mnogo dijelova. Dužina se, naprosto, ne sastoji od dijelova, mada se može podijeliti na dijelove. Kao što se stablo nije sastojalo od cjepanica, mada je moglo biti podijeljeno na cjepanice.

Ipak, to gledište može biti problematično. Promotrimo neku dužinu na brojevnom pravcu, npr. s rubnim točkama 3 i 4.

brojevni pravac

Koliko ima realnih brojeva između 3 i 4? Beskonačno mnogo. Znači li to da na brojevnom pravcu već ima (”aktualno”) beskonačno mnogo točaka između 3 i 4? Jesu li one već tamo (”aktualno”), ili ih mi tek možemo (”potencijalno”) tamo dodati?

Dakle, ima li već (”aktualno”) beskonačno mnogo točaka na nekoj dužini (bila ona AB ili 34)? Ili točke dospijevaju na dužinu tek tako da tu dužinu dijelimo, što možemo činiti (”potencijalno”) u beskraj?

Ako ih već ima (”aktualno”) beskonačno mnogo, sastoji li se dužina od točaka? Je li dužina skup točaka i ništa osim toga? Ali otkud joj onda duljina?

1.2. Do koliko znaš brojati (potencijalna beskonačnost)?

Kad dijete kaže  ”Ja znam brojati do deset. A ti?”, što ćete mu odgovoriti? Ako odgovorite ”do beskonačno” pod tim ne mislite da možete stvarno izbrojati do ∞, nego da uvijek možete nastaviti još i dalje brojati. Odnosno, mislite na potencijalnu beskonačnost, a ne na ostvarenu (”aktualnu”) beskonačnost.

Što to znači? Riječ ”potencijalno” znači ”moguće”, a ”potencijalna beskonačnost” znači mogućnost da se nešto uvijek još i dalje poveća. Zbroj 1 + 1 +  1 +… po tom gledištu nije jednak ∞ i gotovo, kao da bi ∞ bio neki rezultat poput drugih. Rezultat znači nešto gotovo, dovršeno, a zbroj 1 + 1 +  1 +…  nikad nije dovršen. Zato je, prema tom gledištu, taj zbroj samo potencijalno beskonačan, jer se uvijek može još povećati, pa nije konačan, nije ograničen nego je bez-konačan, ne-ograničen. Od Aristotela (4. st. pr. Kr.) pa do 19. stoljeća većina je matematičara smatrala da beskonačnost treba shvatiti isključivo kao potencijalnu.

Što je sa zbrojem 1/2 + 1/4 + 1/8 +… ? Vidjeli smo kako slika sugerira da taj zbroj beskonačno mnogo članova ima konačan rezultat, i to 1.

infinite-series-square

Ipak, upitajmo se još jednom: koliko pravokutnikića moramo dodati da površina doista bude 1? Odgovor je: beskonačno mnogo. Možemo li dodati beskonačno mnogo (sve manjih) pravokutnika? Naravno, možemo reći ”očito je da na kraju ta površina mora biti 1”. Ali, ima li kraja, ako se radi o beskonačno (bez-krajno) mnogo članova?

Jesmo li dobili konačni rezultat zbroja beskonačno mnogo brojeva, ili smo dobili broj kojemu se svakim novim članom potencijalno približavamo ali ga nikad ne dostižemo?

Naš bivši učenik od prije par generacija, Luka M., zastupao ovo drugo gledište u komentaru:

Kod zbrajanja n brojeva (x1 + x2 + … + xn), uzmemo prvi broj i na njega dodajemo sve preostale, ono što dobijemo na kraju zovemo zbrojem. …

Kod zbroja beskonačno mnogo brojeva, ne znamo što napraviti. Jer: ako uzmemo prvi broj i krenemo dodavati ostale, nikad nećemo stati.

Zbog toga mi se čini da je zbrajanje beskonačno mnogo brojeva (sumiranje reda) nešto što je vrstom bitno različito od zbrajanja 2 (ili n) broja. Rekao bih da je sumiranje reda proces bez kraja. To tu operaciju bitno razlikuje od zbrajanja 2 (ili n) broja koja itekako ima kraj.

Ako mi ne možemo, može li računalo stvarno (a ne samo potencijalno) izbrojati do ∞?

Za današnja računala svakako vrijedi da za beskonačno mnogo ma kakvih koraka jest potrebno beskonačno mnogo vremena.

Aristotel je iskoristio zamisao o potencijalnoj beskonačnosti da riješi još jedan Zenonov paradoks (uz ”Ahila i kornjaču”) nazvan ”Dihotomija” (već smo ga spominjali u komentarima). Najprije paradoks:

Neko tijelo, da bi prešlo neki cijeli put mora prvo prijeći polovicu, zatim četvrtinu, pa osminu i tako neograničeno dalje… Dakle, opet imamo naš zbroj beskonačno mnogo članova 1/2 + 1/4 + 1/8 +… Od trkača bi se moglo tražiti, kaže Zenon, da broji svaki od tih koraka. No, to bi značilo da  ”kad je prijeđena cijela crta, izlazi da je izbrojen neograničen broj (∞), što je … nemoguće”.

Kako je Aristotel odgovorio na taj Zenonov izazov?

Aristotel kaže da ne postoji već beskonačno mnogo dijelova dužine, nego je dužina tek potencijalno uvijek još djeljiva. Neograničena podijeljenost vremena i prostora u Zenonovim dokazima nije nešto što je stvarno već sprovedeno, ostvareno, niti pak može biti ostvareno. Prostor i vrijeme mogu se dijeliti neograničeno, ali ti dijelovi prostora i vremena nastaju tek kao rezultat samoga dijeljenja. Prije dijeljenja prostor i vrijeme nemaju dijelove.

Stoga Aristotel zaključuje kako je moguće udaljenost od Ahila do kornjače dijeliti u beskraj (potencijalno), ali to ne znači da onaj tko prelazi tu udaljenost prelazi ∞ mnogo dijelova. Dijelovi nastaju tek kad netko dijeli tu udaljenost. Da bi netko imao problem kako prijeći udaljenost koja ima ∞ mnogo dijelova, najprije bi netko trebao podijeliti tu udaljenost na ∞ mnogo dijelova. Inače se ta udaljenost može prijeći, dakako, ako se jednostavno krene i ne stane.

Dodatak:

Isti rezultat sume beskonačnog reda kao i gornja slika daje formula za sumu beskonačnog reda koju smo izveli u prošlome zapisu. Ali, uz taj se izvod također može staviti jedan upitnik. Postupak izvođenja išao je ovako:

S = 1 + x + x2 + x3 + …

Sad pomnožimo obje strane jednakosti sa x.

S∙x = x + x2 + x3 + x4 + …

S desne strane to je isti izraz kao i ranije, samo bez 1! (Je li? 😉 )

Doista, je li? Recimo da se ne radi o beskonačnom redu, nego nekom konačnom, sa n članova.

S = 1 + x + x2 + x3 + … + xn.

Sad pomnožimo obje strane jednakosti sa x.

S∙x = x + x2 + x3 + x4 + …+ xn + xn+1

Ako oduzmemo te dvije jednakosti dobijemo S – S∙x = 1- xn+1. To vrijedi za bilo koji n, s time da ovaj član xn+1 postaje sve manji i manji kako n ide u beskonačnost (jer je iznos x manji od 1). Kad taj član postane 0 tad dobijemo onu formulu za sumu beskonačnog reda. Ali, kada taj član postaje nula? Tek kad n=∞, odnosno, gledano sa stajališta potencijalne beskonačnosti, nikad!

1.1. Mora li zbroj beskonačno mnogo članova imati beskonačan iznos?

Zenon kaže (1.) da je Ahilu potrebno beskonačno mnogo ”koraka”, što podrazumijeva (2.) da mu za njih treba beskonačno mnogo vremena. Slijedi li nužno (2.) iz (1.)? Je li moguće da mu je za beskonačno mnogo ”koraka” dovoljno konačno mnogo vremena?

Komentator na Ahilu i kornjači, pod nadimkom Kairos, kaže:

Ovo je problem zbrajanja beskonačne serije … Ovo je matematički način rješavanja ovakvih paradoksa gdje se zbrajaju sve manji dijelovi beskonačno mnogo puta.

Dakle, izgleda da nam treba neko znanje iz matematike. U hrvatskom je u ovome matematičkom značenju za englesko series uobičajena riječ ”red”. Zbroj beskonačnog reda se uči iz matematike u 4. razredu, pa ga velika većina čitatelja još nije učila. Ovdje ću pojednostavljeno objasniti one zamisli koje su nam (možda?) potrebne za pitanje o Ahilu i kornjači. Naravno, iz matematike ćete redove učiti na pravi, strogi način.

Mora li zbroj beskonačno mnogo članova biti beskonačan?

Recimo zbroj 1 + 1 + 1 + … očito ide u beskonačno. Isto tako i zbroj 1 + 2 + 4 + 8 +… Vrijedi li to za svaki zbroj beskonačno mnogo članova? Znalaoc kaže:

… ako počnemo dijeliti tu duljinu na sve manje dijelove dođemo do zaključka da je taj prostor beskonačno djeljiv, znači beskonačan je…

Dakle, ako neka duljina ima beskonačno mnogo dijelova, onda je beskonačna? Ili nije? Kairos naglašava da ”se zbrajaju sve manji dijelovi”. Na primjer, je li ovaj zbroj beskonačan?

beskonacni red

Ne! Slika dovoljno govori:

infinite-series-square

Površina gornjeg lika očito nije beskonačna, mada ima beskonačno mnogo dijelova. beskonacni redima beskonačno mnogo članova, ali, budući da su ti članovi sve manji i manji, suma je konačna. U ovom slučaju, kao što se vidi iz slike, iznos sume je 1.

(Ili je ipak malo manji od 1? 😉 )

Evo još jednog primjera:

beskonacni red1

Dokaz:

220px-GeometricSquares_svg

Budući da površina gornjeg kvadrata očito nije beskonačna, jasno je da je suma konačan broj, bez obzira što je članova beskonačno mnogo. Vidite li iz slike da je ta suma 1/3? (Ili je stalno sve manje, ali uvijek još malo, malo, malo,… manja od 1/3? ;))

Dakle, moguće je zbrojiti beskonačno mnogo (sve manjih!) dijelova i dobiti konačan broj.

Sad, neki kažu da je se zbroj beskonacni reduvijek sve više približava iznosu 1, ali da nikad nije 1! Sigurno je da taj zbroj nije veći od 1 (svakako nije beskonačan). Ali je li 1 ili je malo manji od 1? Svaki novi pravokutnikić na ovoj slici približava površinu iznosu 1, ali nakon koliko pravokutnika će ona zapravo biti 1?

infinite-series-square

Da bi površina bila upravo 1, a ne skoro 1, potrebno je dodati beskonačno mnogo pravokutnikića. Što vi mislite, je li OK reći: jasno se vidi da na kraju suma mora biti 1, ili ipak treba cjepidlačiti s time da nema kraja nego se površina uvijek samo približava 1?

I, glavno pitanje: rješava li ovo Ahila i kornjaču?

Ako zbrojimo sve manja vremena t1 + t2 + t3 +… dobijemo li konačan ili beskonačan rezultat? Ako je konačan, što mislite je li taj rezultat jednak rezultatu kojega dobijemo ispravnim fizikalnim računom? Ako nije jednak, je li puno veći ili malo manji od fizikalno ispravnoga?

hnjo kaže:

mislim da je problem u tome što ovim načinom se vrijeme sve više smanjuje, i kad zbrojimo sve t-ove (beskonačno ih je) nikad nećemo dobiti ono vrijeme u kojemu će se oni susresti, a to je 10 sekundi

Što vi kažete? 🙂


Dodatak: Možemo izvesti formulu za računanje sume beskonačnog reda, kad su članovi po iznosu manji od 1. Općenito, suma 1 + x + x2 + x3 + … ima konačan rezultat ako je iznos x manji od 1. (Vidjeli smo da je npr. za vrijednosti x =1 ili x =2 ta suma beskonačna.) Kolika je ta suma? Recimo da je S. Dakle,

S = 1 + x + x2 + x3 + …

Sad pomnožimo obje strane jednakosti sa x.

S∙x = x + x2 + x3 + x4 + …

S desne strane to je isti izraz kao i ranije, samo bez 1! (Je li? 😉 ) Dakle

S = S∙x + 1

SS∙x = 1

S∙(1-x) = 1

i na kraju

suma geometrijskog reda.

(Dobijemo li za vrijednosti x = 1/2 i za x = 1/4 pomoću gornje formule iste rezultate kao što smo ranije dobili pomoću slika? Možemo li ovu formulu primijeniti na problem Ahila i kornjače?)

1.0. Ahil i kornjača

Započinjemo jednim slavnim paradoksom, o kojem sam nekima od vas već govorio na satu (neka vas to ne spriječi da komentirate).

Među zadatcima za pripremu državne mature iz fizike našao se i ovaj:

Ahil i kornjaca zadatak

Zadatak nije težak, dva jednolika pravocrtna gibanja. Od početka gibanja Ahila i kornjače do dostizanja prošlo je neko vrijeme t. Za to vrijeme su prešli putove:

skornjača = vkornjače · t,     sAhil = vAhil · t.

Ahil je prešao veći put, i to veći za njihovu međusobnu početnu udaljenost:

sAhil – skornjača =90 metara.

Slijedi

vkornjače · t  – vAhil · t = 90 metara

i kad se uvrste zadane brzine, dobije se da će Ahil će stići kornjaču za 10 sekundi; za to vrijeme će kornjača prijeći 1 m a Ahil 91 m. Grafički se to može prikazati ovako:

ahil i kornjaca 1

Naravno, tamo gdje se sijeku dva pravca, to je trenutak (na osi t) i mjesto (na osi x) dostizanja.

Što se tiče državne mature, to je točno rješenje, ono je jednoznačno, i tu nema ništa sporno. Ali, nije slučajno da su autori zadatka ovdje u glavne uloge postavili baš brzonogog Ahila i sporu kornjaču. Naime, to su glavni likovi jednog od slavnih Zenonovih paradoksa. (Paradoks čine iskazi koji su po svemu sudeći istiniti, ali međusobno proturječe). Zenon ovako nekako razmišlja:

Da bi Ahil stigao kornjaču, najprije mora doći do točke gdje je kornjača bila u trenutku kad je Ahil krenuo – nazovimo tu točku K1. Ahil je brzonog, pa će za kratko vrijeme prijeći tu udaljenost. No, u međuvremenu se kornjača pomaknula. Kornjača je spora pa nije mogla otići jako daleko – nazovimo tu točku K2. U svakom slučaju, Ahil sada (da bi stigao kornjaču) mora doći do dočke K2. No, dok Ahil dođe do točke K2, kornjača se pomaknula do neke točke K3, itd. Ahil svaki put (prije nego sustigne kornjaču) mora doći do mjesta gdje je kornjača prethodno bila, a kornjača će se svaki put u međuvremenu pomaknuti. Stoga Ahil nikad neće stići kornjaču.

Je li moguće naći grešku u Zenonovom razmatranju? Ja ne vidim grešku. Pa ipak, znamo (kao što je znao i Zenon) da Ahil hoće stići kornjaču. Dakle, imamo dva međusobno proturječna rezultata (”stići će ju za 10 s” i ”neće ju nikad stići”), bez da možemo pronaći pogrešku – to čini paradoks.

Ako se vratimo na naš maturalni zadatak, možemo ovaj problem prikazati i brojčano. Dok Ahil prijeđe 90 metara da bi došao do mjesta gdje je kornjača bila na početku, kornjača će se pomaknuti za 90/91 metara.

ahil i kornjaca 2

Dok Ahil prijeđe tih 90/91 metara, kornjača će se pomaknuti za 90/912 = 90/8281 metara. Zumirajmo na grafu dio nakon K1 – dakle, graf ne započinje od 0, nego od K1 i trenutka kad je Ahil stigao do K1 (kornjača je već stigla u K2).

ahil i kornjaca 3

Dok Ahil prijeđe tih 90/8281 metara kornjača će se pomaknuti za 90/913 = 90/753571 metara, itd. Zumirajmo na grafu dio nakon K2 – graf sad započinje od K2 i trenutka kad je Ahil stigao u K2 (kornjača je već stigla do K3).

ahil i kornjaca 4

Mogli bismo ponavljati te slike s početkom u K3, K4, K5, …, neograničeno, bez da ikad dođemo do točke susreta. Kad Ahil stigne do Kn kornjača je uvijek već u Kn+1. Očito je da se ta udaljenost (koju prijeđe kornjača dok Ahil stigne na mjesto gdje je ona maloprije bila) svaki put smanjuje za 91 puta, pa će nakon n ovakvih približavanja biti 90/91n . Ali, nakon koliko će puta udaljenost biti nula? Nikad.

Zamislimo da gledamo snimku te utrke snimljenu beskrajno sofisticiranom opremom. U trenutku kad Ahil prijeđe 90 metara, a kornjača se pomakne u točku K2, snimka se na čas zaustavi. Potom se snimka nastavi dok Ahil ne dođe u točku K2, a kornjača se pomakne u K3. Itd. Kad ćemo vidjeti da Ahil dostiže kornjaču? Nikad.

Ali, ako pustimo snimku da se odvija bez prekidanja, vidjet ćemo da Ahil dostiže kornjaču za 10 s.

Što mislite, u čemu je stvar? Zašto (naizgled?) ispravnim razmišljanjem dolazimo do očito pogrešnog rezultata, da Ahil neće stići kornjaču?